What is the result if you divide #(18r^4s^5t^6)/(-3r^2st^3)#?

1 Answer
Mar 17, 2018

See a solution process below:

Explanation:

First, rewrite the expression as:

#18/-3(r^4/r^2)(s^5/s)(t^6/t^3) =>#

#-6(r^4/r^2)(s^5/s)(t^6/t^3)#

Next, use this rule of exponents to rewrite the #s# term in the denominator:

#a = a^color(blue)(1)#

#-6(r^4/r^2)(s^5/s^color(blue)(1))(t^6/t^3)#

Now, use this rule of exponents to complete the division:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#

#-6(r^color(red)(4)/r^color(blue)(2))(s^color(red)(5)/s^color(blue)(1))(t^color(red)(6)/t^color(blue)(3)) =>#

#-6r^(color(red)(4)-color(blue)(2))s^(color(red)(5)-color(blue)(1))t^(color(red)(6)-color(blue)(3)) =>#

#-6r^2s^4t^3#