What is #int cos^2(3u)du#?
2 Answers
Mar 18, 2018
The answer is
Explanation:
Reminder
Therefore,
Mar 18, 2018
We seek:
# int \ cos^2(3u) \ du = (6u + sin 6u)/12 + C #
Explanation:
We seek:
# I = int \ cos^2(3u) \ du #
We can use the trigonometric identity:
# cos 2x -= cos^2x - sin^2 x#
From which we get:
# cos 2x -= cos^2x - (1-cos^2x) <=> cos^2x -= (1+cos 2x)/2 #
So, we can write the integral as:
# I = int \ (1+cos 6u)/2 \ du #
# \ \ = 1/2 \ int \ 1+cos 6u \ du #
# \ \ = 1/2 \ {u + (sin 6u)/6} + C #
# \ \ = 1/2 \ {(6u + sin 6u)/6} + C #
# \ \ = (6u + sin 6u)/12 + C #