What is #4sqrt5 + 2sqrt20#?

1 Answer
Mar 18, 2018

The simplified expression is #8sqrt5#.

Explanation:

You have to use these two radical rules to simplify the expression:

#sqrt(color(red)acolor(blue)b)=sqrtcolor(red)a*sqrtcolor(blue)b#

#sqrt(color(red)a^2)=color(red)a#

To start, factor #20#. Then, things will start to make sense using the above rules:

#color(white)=4sqrt5+2sqrt20#

#=4sqrt5+2sqrt(color(red)2*color(blue)2*color(green)5)#

#=4sqrt5+2sqrt(color(purple)2^2*color(green)5)#

#=4sqrt5+2sqrtcolor(purple)(2^2)*sqrtcolor(green)5#

#=4sqrt5+2*color(purple)2*sqrtcolor(green)5#

#=4sqrt5+4*sqrtcolor(green)5#

#=4sqrt5+4sqrtcolor(green)5#

#=8sqrt5~~17.88854...#

That's as simplified as it gets. Hope this helped!