#sec^2x+6tanx=6#
#tan^2x+1+6tanx=6#
#tan^2x+1+6tanx-6=0#
#tan^2x+6tanx-5=0#
Using the quadratic formula:
#tanx=(-6+-sqrt((-6)^2-(4)(1)(-5)))/(2(1))#
#tanx=(-6+-sqrt(36+20))/2#
#tanx=(-6+-sqrt(56))/2#
#tanx=(-6+-2sqrt(14))/2#
#tanx=-3+-sqrt(14)#
This means that:
#x=tan^-1(-3+sqrt14),quadtan^-1(-3-sqrt14)#
Since the #tan# function is periodic for every #pi# units, we add #pik# to each answer to represent all the possible solutions:
#x=tan^-1(-3+sqrt14)color(blue)+color(blue)(pik),quadtan^-1(-3-sqrt14)color(blue)+color(blue)(pik)#
After using a calculator, you find that the only four answers on the given interval are:
#x=tan^-1(-3+sqrt14),qquadtan^-1(-3+sqrt14)+pi,quadtan^-1(-3-sqrt14)+pi,qquadtan^-1(-3-sqrt14)+2pi#
Those are the answers. Hope this helped!