How do you differentiate #sin^2(x) cos (x)#?
1 Answer
Mar 22, 2018
Explanation:
#"differentiate using the "color(blue)"product rule"#
#"Given "y=f(x)g(x)" then"#
#dy/dx=f(x)g'(x)+g(x)f'(x)larrcolor(blue)"product rule"#
#"differentiate "sin^2x=(sinx)^2" using "color(blue)"chain rule"#
#"Given "y=f(g(x))" then"#
#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#
#f(x)=(sinx)^2rArrf'(x)=2sinxcosx=sin2x#
#g(x)=cosxrArrg'(x)=-sinx#
#rArrd/dx(sin^2xcosx)#
#=sin^2x(-sinx)+cosxsin2x#
#=cosxsin2x-sin^3x#