I really need help with this plz i) Find #d/dx(x^3lnx)# ii) Hence find #intx^2lnxdx# ?

i,ve done the first part but i cant do the second
very badly stuck

2 Answers
Mar 22, 2018

I get #(x^3(3lnx-1))/9+C#.

Explanation:

Given: #intx^2lnx\ dx#

Apply integration by parts, #intu \ dv=uv-intv \ du#.

Here, I'll let #u=lnx,dv=x^2#

#:.du=1/x \ dx,v=1/3x^3# (no need #C# yet)

So, going back to our original integral, we get

#int(x^2lnx) \ dx=lnx*1/3x^3-int(1/3x^3*1/x) \ dx#

#=(x^3lnx)/3-int(x^2/3) \ dx#

#=(x^3lnx)/3-1/3intx^2 \ dx#

#=(x^3lnx)/3-1/3*x^3/3+C#

#=(x^3lnx)/3-x^3/9+C#

#=(3x^3lnx-x^3)/9+C#

#=(x^3(3lnx-1))/9+C#

Mar 22, 2018

# d/dx (x^3lnx) = x^2+3x^2lnx #

# int \ x^2lnx \ dx = 1/3x^3lnx - x^3/9 + C #

Explanation:

Part (i)

We seek:

# d/dx (x^3lnx) #

We can use the product rule, to get:

# d/dx (x^3lnx) = (x^3)(d/dxlnx))+(d/dxx^3)(lnx) #
# " "= (x^3)(1/x)+(3x^2)(lnx) #
# " "= x^2+3x^2lnx #

Part (ii)

"Hence", indicates we should probably use the earlier result:

# d/dx (x^3lnx) = x^2+3x^2lnx #

Integrate (term by term) wrt #x# (omitting the constant of integration), we get

# x^3lnx = int \ x^2 \ dx + int \ 3x^2lnx \ dx #

The first integral is trivial (power rule), the second integral is the result we seek, thus:

# x^3lnx = x^3/3 + 3 \ int \ x^2lnx \ dx #

And we can rearrange:

# 3 \ int \ x^2lnx \ dx = x^3lnx - x^3/3 #

And incorporating the constant of integration:

# int \ x^2lnx \ dx = 1/3x^3lnx - x^3/9 + C #