#int (x^6+1)/(x+1)dx#
#=> int(((x+1)(x^5-x^4+x^3_x^2+x) + (-x+1))/(x+1))dx#
#=>int( (cancel((x+1))(x^5-x^4+x^3-x^2+x))/cancel(x+1) + (-x+1)/((x+1)))dx#
#=>int(x^5-x^4+x^3-x^2+x)dx + int(1-x)/(x+1)dx#
#=>int(x^5-x^4+x^3-x^2+x)dx + int1/(x+1)dx-intx/(x+1)dx#
Usig the rule, #color(red)(intx^n dx= x^(n+1)/(n+1)# and #color(red)(int 1/x dx= log|x|#
#=>(x^6/6-x^5/5+x^4/4-x^3/3+x^2/2) + log|x+1|+C-intx/(x+1)dx#
#color(white)(dddd#
#color(white)(dddd#
Solving, #intx/(x+1)dx#
Let, #x+1 = t => dx=dt#
#:. intx/(x+1)dx = int(t-1)/tdt#
#=> int1-1/tdt #
#=> t -log|t|#
#=> x+1 - log|x+1|# [Replacing, #t=x+1# back.]
#color(white)(dddd#
#color(white)(dddd#
Final answer:-
#=>(x^6/6-x^5/5+x^4/4-x^3/3+x^2/2) + log|x+1|-(x+1) + log|x+1|#
#=>(x^6/6-x^5/5+x^4/4-x^3/3+x^2/2) + log|x+1|^2-(x+1)+C#
#=>x^6/6-x^5/5+x^4/4-x^3/3+x^2/2-x + log|x+1|^2+1+ C#
#=>x^6/6-x^5/5+x^4/4-x^3/3+x^2/2-x + log|x+1|^2+C# (note that, #1+C# is taken as #C# as it is a constant,)