Integral by substitution trigonometric ? a- ) int x/sqrt(9-x²)

I can not completely resolve this issue, please someone give me a hint how to solve!

2 Answers
Mar 25, 2018

#intx/sqrt(9-x^2)dx=-sqrt(9-x^2)+C#

Explanation:

So, we want

#intx/sqrt(9-x^2)dx#

In general, if we encounter an integral with the root #sqrt(a^2-x^2),# we can make the trigonometric substitution

#x=asintheta#

(We could use cosine, but using sine avoids unnecessary negative signs popping up.)

Here, #a^2=9, a=3, x=3sintheta, dx=3costhetad theta#

Rewrite with the substitution:

#int(9sinthetacosthetad theta)/sqrt(9-9sin^2theta)#

Simplify:

#int(9sinthetacosthetad theta)/sqrt(9(1-sin^2theta))=3int(sinthetacosthetad theta)/sqrt(1-sin^2theta)#

Recall the identity

#sin^2theta+cos^2theta=1#

This tells us that #1-sin^2theta=cos^2theta.# Apply this identity to our integral:

#3int(sinthetacosthetad theta)/sqrt(cos^2theta)#

#sqrt(cos^2theta)=|costheta|=costheta# -- We drop the absolute value bars and assume we're positive.

#3int(sinthetacancelcostheta)/(cancelcostheta)d theta#

#3intsinthetad theta=-3costheta+C#

We need to go back to #x.# Now, recall #x=3sintheta#. Therefore, #sintheta=x/3#. Let's once again use the identity #sin^2theta+cos^2theta=1#:

#x^2/9+cos^2theta=9/9#

#cos^2theta=(9-x^2)/9#

#costheta=sqrt(9-x^2)/3#

So, our integral becomes

#intx/sqrt(9-x^2)dx=-sqrt(9-x^2)+C#

Mar 25, 2018

#intx/sqrt(9-x^2)dx=-sqrt(9-x^2)+C#

Explanation:

The question is to evaluate:

#intx/sqrt(9-x^2)dx#

Draw a right-angle triangle with an angle #theta#.

Label the side opposite #theta# as #x#.
Label the hypotenuse as #3#.

Now examine the triangle and notice that #sintheta=x/3#, and so:

#x=3sintheta#
#dx=3costheta# #d##theta#

Also notice that the side of the triangle adjacent to #theta# must be #sqrt(9-x^2)# by the Pythagorean Theorem. Therefore:

#costheta=sqrt(9-x^2)/3#

#sqrt(9-x^2)=3costheta#

Now rewrite the integral in terms of #theta#:

#int# #((3sintheta))/((3costheta))##(3costheta# #d##theta)#

Now simplify:

#int# #((3sintheta))/(cancel((3costheta)))##cancel((3costheta# #d##theta)#

#int##3sintheta# #d##theta =-3costheta+C#

Now put the expression back in terms of #x#:

#=-sqrt(9-x^2)+C#