What is the limit as x approaches 0 of #tan(x)/sin(x)#? Calculus Limits Determining Limits Algebraically 1 Answer VNVDVI Mar 27, 2018 #lim_(x->0)tanx/sinx=1# Explanation: Plugging in #0# right away yields #tan(0)/sin(0)=0/0,# an indeterminate form, so we must simplify. Recall #tanx=sinx/cosx.# So, #lim_(x->0)tanx/sinx=lim_(x->0)(sinx/cosx)/sinx=lim_(x->0)cancelsinx/(cosxcancelsinx)=lim_(x->0)secx=sec0=1# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 20700 views around the world You can reuse this answer Creative Commons License