If #A_x=(-1/(x^2+1),1/(|x|+1)]# how do you find ? #uuu_(x=1)^(oo)A_x= ?# and #nnn_(x=1)^(oo)A_x=?#
1 Answer
Mar 28, 2018
Explanation:
Given:
#A_x = (-1/(x^2+1), 1/(abs(x)+1)]#
Note that:
-
#-1/(x^2+1) < 0# for all#x in RR# -
#lim_(x->oo) -1/(x^2+1) = 0# -
#1/(abs(x)+1) > 0# for all#x in RR# -
If
#0 < a < b# then:#-1/(a^2+1) < -1/(b^2+1) < 0 < 1/(abs(b)+1) < 1/(abs(a)+1)# -
#A_1 = (-1/2, 1/2]#
So:
#(-1/2, 1/2] = A_1 sup A_2 sup A_3 sup ... sup { 0 }#
and for any
#epsilon !in A_x ^^ -epsilon !in A_x# for all#x >= n#
So:
#uuu_(x=1)^oo A_x = A_1 = (-1/2, 1/2]#
#nnn_(x=1)^oo A_x = { 0 }#