How do you simplify #cos(2theta)/(costheta-sintheta)#? Trigonometry Trigonometric Identities and Equations Fundamental Identities 1 Answer sankarankalyanam Apr 2, 2018 #=> color(green)(cos theta + sin theta)# Explanation: #cos (2theta) / (cos theta - sin theta)# From the above table, #cos 2theta = cos^2 theta - sin^2 theta# #=> (cos^2 theta - sin^2 theta) / (cos theta - sin theta)# #=> (cancelcolor(red)(costheta - sin theta) * (cos theta + sin theta)) / cancelcolor(red) (cos theta - sin theta)# #=> color(green)(cos theta + sin theta)# Answer link Related questions How do you use the fundamental trigonometric identities to determine the simplified form of the... How do you apply the fundamental identities to values of #theta# and show that they are true? How do you use the fundamental identities to prove other identities? What are even and odd functions? Is sine, cosine, tangent functions odd or even? How do you simplify #sec xcos (frac{\pi}{2} - x )#? If #csc z = \frac{17}{8}# and #cos z= - \frac{15}{17}#, then how do you find #cot z#? How do you simplify #\frac{\sin^4 \theta - \cos^4 \theta}{\sin^2 \theta - \cos^2 \theta} # using... How do you prove that tangent is an odd function? How do you prove that #sec(pi/3)tan(pi/3)=2sqrt(3)#? See all questions in Fundamental Identities Impact of this question 11205 views around the world You can reuse this answer Creative Commons License