First. compute the indefinite intregral:
#color(white)=intx/(x^2+2)^3dx#
Let #u=x^2+2#, so #du=2xdx# or #dx=1/(2x)du#:
#=intx/u^3 1/(2x)du#
#=intcolor(red)cancelcolor(black)x/u^3 1/(2color(red)cancelcolor(black)x)du#
#=1/2int1/u^3du#
#=1/2intu^-3du#
Power rule:
#=1/2*(u^(-3+1))/(-3+1)#
#=1/2*(u^(-2))/(-2)#
#=-u^-2/4#
#=-1/(4u^2)#
Plug in #x^2+2# back in for #u#, and don't forget to add #C#:
#=-1/(4(x^2+2)^2)+C#
Now, plug in #x=2# to this and then subtract the value when you plug in #x=1#:
#=-1/(4(2^2+2)^2)-(-1/(4(1^2+2)^2))#
#=-1/(4(4+2)^2)+1/(4(1+2)^2)#
#=-1/(4*6^2)+1/(4*3^2)#
#=-1/(4*36)+1/(4*9)#
#=-1/144+1/36#
#=-1/144+4/144#
#=3/144#
#=1/48#
That's the result. Hope this helped!