How to integrate #int e^x sinx cosx dx# ?

2 Answers
Apr 3, 2018

#int\ e^xsinxcosx\ dx=e^x/10sin(2x)-e^x/5cos(2x)+C#

Explanation:

First we can use the identity:

#2sinthetacostheta=sin2x#

which gives:

#int\ e^xsinxcosx\ dx=1/2int\ e^xsin(2x)\ dx#

Now we can use integration by parts. The formula is:

#int\ f(x)g'(x)\ dx=f(x)g(x)-int\ f'(x)g(x)\ dx#

I will let #f(x)=sin(2x)# and #g'(x)=e^x/2#. Applying the formula, we get:

#int\ e^x/2sin(2x)\ dx=sin(2x)e^x/2-int\ cos(2x)e^x\ dx#

Now we can apply integration by parts once more, this time with #f(x)=cos(2x)# and #g'(x)=e^x#:

#int\ e^x/2sin(2x)\ dx=sin(2x)e^x/2-(cos(2x)e^x-int\ -2sin(2x)e^x\ dx)#

#1/2int\ e^xsin(2x)\ dx=sin(2x)e^x/2-cos(2x)e^x-2int\ sin(2x)e^x\ dx#

Now we have the integral on both sides of the equality, so we can solve it like an equation. First, we add 2 times the integral to both sides:

#5/2int\ e^xsin(2x)\ dx=sin(2x)e^x/2-cos(2x)e^x+C#

Since we wanted a half as the coefficient on the original integral, we divide both sides by #5#:

#1/2int\ e^xsin(2x)\ dx=1/5(sin(2x)e^x/2-cos(2x)e^x)+C=#

#=e^x/10sin(2x)-e^x/5cos(2x)+C#

Apr 3, 2018

# int \ e^x \ sinxcosx \ dx = 1/10{e^x \ sin2x -2\ e^x \ cos2x} + C #

Explanation:

We seek:

# I = int \ e^x \ sinxcosx \ dx #

Which using the identity:

# sin 2x -= 2sinxcosx #

We can write as:

# I = 1/2 \ int \ e^x \ sin2x \ dx #
# I = 1/2 \ I_S #

Where for convenience we denote:

# I_S = int \ e^x \ sin2x \ dx #, and # I_C = int \ e^x \ cos2x \ dx #

We can apply integration by parts. Typically when assigning values of #u# and #dv#, we want to choose a function for #u# that will get simpler as we differentiate it. However, we see that #e^(x)# remain unchanged (being an exponential function) and #sinx# will alternate with #cosx#x as we differentiate or integrate.

In fact, we see it doesn't really matter which we choose for #u# and which for #dv#. So arbitarlity:

Let # { (u,=e^x, => (du)/dx,=e^x), ((dv)/dx,=sin2x, => v,=-1/2 cos2x ) :}#

Then plugging into the IBP formula:

# int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx #

We get:

# int \ (e^x)(sin2x) \ dx = (e^x)(-1/2cos2x) - int \ (-1/2cos2x)(e^x) \ dx #

# :. I_S = -1/2 \ e^x \ cos2x + 1/2 int \ e^x \ cos2x \ dx #
# :. I_S = -1/2 \ e^x \ cos2x + 1/2 I_C # ..... [A]

Now, we perform integration by parts once more.

Let # { (u,=e^x, => (du)/dx,=e^x), ((dv)/dx,=cos2x, => v,=1/2 sin2x ) :}#

Then plugging into the IBP formula we get:

# int \ (e^x)(cos2x) \ dx = (e^x)(1/2cos2x) - int \ (1/2sin2x)(e^x) \ dx #

# :. I_C = 1/2 \ e^x \ sin2x - 1/2 \ int e^x \ sin2x \ dx #
# :. I_C = 1/2 \ e^x \ sin2x - 1/2 I_S # ..... [B}

Now, we have two simultaneous equation in two unknowns #I_S#. and #I_C#, so substituting [B[ into [A] we have:

# I_S = -1/2 \ e^x \ cos2x + 1/2 {1/2 \ e^x \ sin2x - 1/2 I_S} #

# \ \ \ = -1/2 \ e^x \ cos2x + 1/4 \ e^x \ sin2x - 1/4 I_S #

# :. 5/4I_S = 1/4 \ e^x \ sin2x -1/2 \ e^x \ cos2x #

# :. I_S = 4/5{1/4 \ e^x \ sin2x -1/2 \ e^x \ cos2x} #

Leading to:

# I = 1/2 \ I_S + C #

# \ \ = 2/5{1/4 \ e^x \ sin2x -1/2 \ e^x \ cos2x} + C #

# \ \ = 1/10{e^x \ sin2x -2\ e^x \ cos2x} + C #