#I=int_(1/e)^(e) (Lnx)^2018/(x+1)*dx#
After using #x=1/y# and #dx=-dy/y^2# transform,
#I=int_(e)^(1/e) (Ln(1/y))^2018/(1/y+1)*(-dy/y^2)#
=#int_(e)^(1/e) (-Lny)^2018/((y+1)/y)*(-dy/y^2)#
=#int_(e)^(1/e) (Lny)^2018/(y^2+y)*(-dy)#
=#int_(1/e)^(e) (Lny)^2018/(y^2+y)*dy#
=#int_(1/e)^(e) (Lnx)^2018/(x^2+x)*dx#
After summing 2 integrals,
#2I=int_(1/e)^(e) (Lnx)^2018/(x+1)*dx#+#int_(1/e)^(e) (Lnx)^2018/(x^2+x)*dx#
=#int_(1/e)^(e) (x*(Lnx)^2018)/(x^2+x)*dx#+#int_(1/e)^(e) (Lnx)^2018/(x^2+x)*dx#
=#int_(1/e)^(e) ((x+1)*(Lnx)^2018*dx)/(x*(x+1))#
=#int_(1/e)^(e) ((Lnx)^2018*dx)/x#
=#[(Lnx)^2019/2019]_(1/e)^(e)#
=#2/2019#
Thus,
#I=int_(1/e)^(e) (Lnx)^2018/(x+1)*dx=1/2019#