How to find the general solution of differential equation #(3y)(x)dy/dx = e^x# when #x=2# and #y= 1# ?

1 Answer
Apr 4, 2018

# y= (sqrt(2Ei(x) - 2Ei(-2) + 3))/sqrt(3)#

where #Ei(x)# is the Exponential integral.

Explanation:

We have:

# (3y)(x) dy/dx = e^x # and #y(2)=1#

We can collect terms for similar variables:

# 3y dy/dx = e^x/x #

Which is a separable First Order Ordinary Differential Equation, so we can "separate the variables" to get:

# int \ 3y \ dy = int \ e^x/x \ dx #

The LHS integral is a standard function, and the RHS is non-integrable using standard elementary function. We can apply the initial conditions and change the variable of integration, to get:

# int_1^y \ 3t \ dt = int_2^x \ e^t/t \ dt #

By applying a substitution to the RHS integral, #u=-t# and evaluating the LHS integral then we have:

# int_1^y \ 3t \ dt = int_(-2)^(-x) \ e^(-u)/(-u) \ du #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ = - int_(-2)^(-x) \ e^(-u)/(u) \ du # ..... [A]
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ = - {int_(-2)^(oo) \ e^(-u)/(u) \ du - int_(-x)^(oo) \ e^(-u)/(u) \ du} #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ = int_(-x)^(oo) \ e^(-u)/(u) \ du - int_(-2)^(oo) \ e^(-u)/(u) \ du #

And using the definition of the Exponential integral , we have:

# Ei(x) := int_(-x)^(oo) \ e^(-t)/(t) \ dt #

So utilising this definition, and integrating [A] we have:

# [ (3t^2)/2]_1^y = Ei(x) - Ei(-2) #

# :. 3/2( y^2-1) = Ei(x) - Ei(-2) #

# :. 3y^2-3 = 2Ei(x) - 2Ei(-2) #

# :. 3y^2= 2Ei(x) - 2Ei(-2) + 3#

# :. y^2= (2Ei(x) - 2Ei(-2) + 3)/3#

Leading to the Particular Solution:

# :. y= (sqrt(2Ei(x) - 2Ei(-2) + 3))/sqrt(3)#