How do you solve #(200/r)-1= 200/(r-10)#?
1 Answer
Explanation:
#200/r - 1 = 200/(r - 10)#
Rearrange the equation
#200/r - 200/(r - 10) = 1#
Take
#200[1/r - 1/(r - 10)] = 1#
Bring
#1/r - 1/(r - 10) = 1/200#
Make denominators equal
#(1/r × (r - 10)/(r - 10)) - (1/(r - 10) xx r/r) = 1/200#
#(r - 10)/(r(r - 10)) - r/(r(r - 10)) = 1/200#
Now, denominators are same. Numerators can be added
#(r - 10 - r) / (r(r - 10)) = 1/200#
#(-10)/(r(r - 10)) = 1/200#
#r(r - 10) = -2000#
#r^2 - 10r = -2000#
#r^2 - 10r + 2000 = 0 color(white)(.)……[1]#
Use quadratic equation formula to find value(s) of
#r = (-b +- sqrt(b^2 - 4ac))/(2a)#
In equation
#a = 1#
#b = -10#
#c = 2000#
#r = (-(-10) +- sqrt((-10)^2 - (4 × 1 × 2000)))/(2 × 1)#
#r = (10 +- sqrt(100 - 8000))/2#
#r = (10+- sqrt(-7900))/2#
#r = 5 +-sqrt(-7900)/2#