How would you prove the following equation? #(secx)/(1-tanx) =(1)/(cosx-sinx)# Thank y'all for the help!

1 Answer
Apr 5, 2018

#(secx)/(1-tanx) =(1)/(cosx-sinx)#

I'll rearrange the equation to, #secx =(1-tanx)/(cosx-sinx)#

#RHS=(1-tanx)/(cosx-sinx)#

#=>(1-sinx/cosx)/(cosx-sinx)#

#=>cancel((cosx-sinx))/(cosxcancel((cosx-sinx)#

#=>1/cosx#

#=>secx = LHS#

Hence Proved :)