If f=x^3+y^3+z^3+3xy, then show that # x(partial f)/(partial x) + y (partial f)/(partial y) + z (partial f)/(partial z) = 3f#?

2 Answers
Apr 5, 2018

#f=x^3+y^3+z^3+3xyz#

#color(red)(delf/dx )= 3x^2 + 3yz#

#color(blue)(delf/dy) = 3y^2 +3xz#

#color(magenta)(delf/dz) = 3z^2 +3xy#

#color(white)(dd#

We need to show that #x color(red)(delf/dx)+ ycolor(blue)(delf/dy) + zcolor(magenta)(delf/dz)= 3f#

#LHS= x[color(red)(3x^2 + 3yz)] +y[color(blue)(3y^2 +3xz)] +z[color(magenta)(3z^2 +3xy)]#

#color(white)(dd#

#=> [3x^3 + 3xyz] + [3y^3 + 3xyz] + [3z^3 +3xyz]#

#=> 3x^3 +3y^3 +3z^3 +9xyz#

#=> 3(x^3 +y^3 +z^3 +3xyz) = 3f#

Apr 5, 2018

The function:

# f = x^3 + y^3 + z^3 + 3xy #

as given does not satisfy the Partial Differential Equation:

# x(partial f)/(partial x) + y (partial f)/(partial y) + z (partial f)/(partial z) = 3f#

and the question is in error.

If however, we modify the function then we can prove a modified result. Consider the modified function:

# f = x^3 + y^3 + z^3 + 3xyz #

and we seek to validate that #f# satisfies the Partial differential Equation:

# x(partial f)/(partial x) + y (partial f)/(partial y) + z (partial f)/(partial z) = 3f#

(In other words we are validating that a solution to the given PDE is #f#). We compute the partial derivative (by differentiating wrt to specified variable and treating all other variables as constants):

# f_x = (partial f)/(partial x) = 3x^2+3yz #

# f_y = (partial f)/(partial y) = 3y^2+3xz #

# f_z = (partial f)/(partial z) = 3z^2 + 3xy#

Next we compute the LHS of the desired expression:

# LHS = x(partial f)/(partial x) + y (partial f)/(partial y) + z (partial f)/(partial z) #

# \ \ \ \ \ \ \ \ = x(3x^2+3yz ) + y(3y^2+3xz) + z(3z^2+3xy) #

# \ \ \ \ \ \ \ \ = 3x^3+3xyz + 3y^3+3xyz + 3z^3+3xyz #

# \ \ \ \ \ \ \ \ = 3(x^3+xyz + y^3+xyz + z^3+xyz) #

# \ \ \ \ \ \ \ \ = 3(x^3+ y^3 + z^3+3xyz) #

# \ \ \ \ \ \ \ \ = 3f \ \ \ # QED