If #u= y/x+ z/x + x/y#, show that #x(partial u)/(partial x)+y(partial u)/(partial y)+z(partial u)/(partial z)=0# ?
1 Answer
We have:
# u = y/x+z/x+x/y #
and we seek to validate that
# x(partial u)/(partial x) + y (partial u)/(partial y) + z (partial u)/(partial z)#
(In other words we are validating that a solution to the given PDE is
# u_x = (partial u)/(partial x) =-y/x^2-z/x^2 + 1/y #
# u_y = (partial u)/(partial y) = 1/x-x/y^2#
# u_z = (partial u)/(partial z) = 1/x#
Next we compute the LHS of the desired expression:
# LHS = x(partial u)/(partial x) + y (partial u)/(partial y) + z (partial u)/(partial z) #
# \ \ \ \ \ \ \ \ = x((y)/(1-2xy+y^2)^(2)) - y ((x-y)/(1-2xy+y^2)^(2)) #
# \ \ \ \ \ \ \ \ = x(-y/x^2-z/x^2 + 1/y) + y(1/x-x/y^2) + z(1/x) #
# \ \ \ \ \ \ \ \ = -y/x-z/x + x/y + y/x-x/y + z/x #
Noting that all terms cancel, we then have the desired result:
# LHS = 0 #
# \ \ \ \ \ \ \ \ = RHS \ \ \ # QED