How do you integrate #int e^(-x)cos(3x)dx# using integration by parts?

1 Answer
Apr 6, 2018

#inte^-xcos(3x)dx=(e^-x(3sin(3x)-cos(3x)))/10+C#

Explanation:

Integration by parts states that:

#intudv=uv-intvdu#

We let #u=e^-x# and #dv=cos(3x)#

We integrate #u# and integrate #dv#

#=>du=e^-x*d/dx[-x]#

#=>du=-e^-x#

#=>v=intcos(3x)dx#

#=>v=sin(3x)/3#

Substitute:

#e^-x*sin(3x)/3-intsin(3x)/3*-e^-xdx#

#=>e^-x*sin(3x)/3+1/3intsin(3x)*e^-xdx#

Repeat the process.

#u=e^-x#

#dv=sin(3x)#

#=>du=-e^-x#

#=>v=intsin(3x)dx#

#=>v=-cos(3x)/3#

#=>e^-x*sin(3x)/3+1/3[e^-x*-cos(3x)/3-int-cos(3x)/3*-e^-xdx]#

#=>e^-x*sin(3x)/3+1/3[e^-x*-cos(3x)/3-1/3intcos(3x)*e^-xdx]#

#=>e^-x*sin(3x)/3+e^-x*-cos(3x)/9-1/9intcos(3x)*e^-xdx#

That integral is our original integral!

We let #s=intcos(3x)*e^-xdx#

#=>s=e^-x*sin(3x)/3+e^-x*-cos(3x)/9-1/9s#

#=>9s=3e^-x*sin(3x)+e^-x*-cos(3x)-s#

#=>10s=3e^-x*sin(3x)+e^-x*-cos(3x)#

#=>s=(3e^-x*sin(3x)+e^-x*-cos(3x))/10#

#=>s=(3e^-x*sin(3x)-e^-xcos(3x))/10#

#=>s=(e^-x(3sin(3x)-cos(3x)))/10# Do you #C# why this is incomplete?

#=>inte^-xcos(3x)dx=(e^-x(3sin(3x)-cos(3x)))/10+C#