How do you find the equation of tangent line to the curve #(2x+3)^(1/2)# at the point x=3?

1 Answer
Apr 7, 2018

#y=1/3x+2#

Explanation:

#"the derivative of the function at x = 3 gives the slope"#
#"of the tangent line"#

#"differentiate using the "color(blue)"chain rule"#

#"Given "y=f(g(x))" then "#

#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#

#"here "y=(2x+3)^(1/2)#

#rArrdy/dx=1/2(2x+3)^(-1/2)xxd/dx(2x+3)#

#color(white)(rArrdy/dx)=(2x+3)^(-1/2)=1/(2x+3)^(1/2)#

#"at "x=3tody/dx=1/3" and "y=3#

#"using "m=1/3" and "(x_1,y_1)=(3,3)#

#y-3=1/3(x-3)larrcolor(blue)"point-slope form"#

#y-3=1/3x-1#

#rArry-1/3x+2larrcolor(red)"equation of tangent"#