How do you find the derivative of #y=x^5/(4sinx)#?
1 Answer
Apr 8, 2018
Explanation:
#"differentiate using the "color(blue)"quotient rule"#
#"Given "y=(g(x))/(h(x))" then"#
#dy/dx=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larrcolor(blue)"quotient rule"#
#g(x)=x^5rArrg'(x)=5x^4#
#h(x)=4sinxrArrh'(x)=4cosx#
#rArrdy/dx=(20x^4sinx-4x^5cosx)/(4sinx)^2#
#color(white)(rArrdy/dx)=(4x^4(5sinx-xcosx))/(16sin^2x)#
#color(white)(rArrdy/dx)=(x^4(5sinx-xcosx))/(4sin^2x)#