How does one verify #tanx+cosx/(1+sinx)=secx#?

#tanx+cosx/(1+sinx)=secx#

3 Answers
Apr 8, 2018

See below

Explanation:

Using:
#tanx=sinx/cosx#
#sin^2x+cos^2x=1#
#1/cosx= secx#

Start:

#tanx+cosx/(1+sinx)= secx#

#sinx/cosx+cosx/(1+sinx)= secx#

#(sinx(1+sinx))/(cosx(1+sinx))+(cosx*cosx)/((1+sinx)cosx)= secx#

#(sinx+sin^2x)/(cosx+cosxsinx)+(cos^2x)/(cosx+cosxsinx)= secx#

#(sinx+sin^2x+cos^2x)/(cosx+cosxsinx)= secx#

#(sinx+1)/(cosx+cosxsinx)= secx#

#cancel((sinx+1))/(cosxcancel((1+sinx)))= secx#

#1/cosx= secx#

#secx= secx#

Apr 8, 2018

1.) tan x = #((sin x)/"cos x")#
2.) plug it in: #((sin x)/"cos x")# + #cos x/ (1+sin x)#

3.) both sides must have a common denominator so:
#((sin x)(1+sin x))/((cos x)(1+sin x))# + #((cos x)(cos x))/((cos x)(1+sin x))#

4.) foil the equation (distribute):
#(sin x + sin^2 x)/(cos x +cosxsin x)# + #(cos^2 x)/(cos x + cosxsin x)#

5.) add numerators:
#(sin x + sin^2 x + cos^2 x)/(cos x + cosxsin x)#

6.) then: #cos^2 x + sin^2 x = 1#

#(1+sin x)/(cos x(1+sin x)#

7.) cancel out #1+sinx#

8.) left with: #1/cos x#

9.) simplify: #sec x#

Apr 8, 2018

#tanx+(cosx)/(1+sinx)#

#(sinx)/(cosx)+(cosx)/(1+sinx)#

#((sinx)(1+sinx))/((cosx)(1+sinx))+((cosx)(cosx))/((1+sinx)(cosx))#

#((sinx+sin^2x))/((cosx)(1+sinx))+((cos^2x))/((1+sinx)(cosx))#

#(sinx+sin^2x+cos^2x)/((1+sinx)(cosx))#

Remember #sin^2x+cos^2x=1# that's the pythagorean identity.

#(sinx+1)/((1+sinx)(cosx))#

#cancel((1+sinx))/(cancel((1+sinx))(cosx))#

#1/cosx#

#secx#

Explanation:

With any fancy trig transformation, we can start from the left or the right. As for me, I want to start with complicated left and turn it into the right.
I took a guess at the strategy to use. On the right, secx is a fraction (it's 1 over cosx). So I should make the left into a fraction too. Let's start by turning tanx into a fraction (tanx=sinx/cosx). And then combine the two terms into a single fraction. Hopefully that fraction should simplify out. In fact it does, if you remember your identities. And it eventually gets to secx.