The equilibrium concentrations are:
#["Na"^"+"] color(white)(ml)= "0.125 mol/L"#
#["Cl"^"-"]color(white)(mml)= "0.125 mol/L"#
#["H"^"+"]color(white)(mm) = 4.7 × 10^"-3"color(white)(l)"mol/L"#
#["HCHO"_2^"-"] = 4.7 × 10^"-3"color(white)(l)"mol/L"#
#["HCHO"_2] = "0.120 mol/L"#
Initial moles of each species
In 50.0 mL of 0.25 mol/L #"HCl"#,
#"Amount of HCl" = 50.0 color(red)(cancel(color(black)("mL HCl"))) × ("0.25 mmol HCl")/(1 color(red)(cancel(color(black)("mL HCl")))) = "12.5 mmol HCl"#
#"Amount of Cl"^"-" = 12.5 color(red)(cancel(color(black)("mmol HCl"))) × ("1 mmoL H"^"+")
/(1 color(red)(cancel(color(black)("mmol HCl"))))= "12.5 mmol Cl"^"-"#
The equilibrium calculation
In 50.0 mL of 0.25 mol/L #"NaCHO"_2#,
#"Amount of NaCHO"_2 = 50.0 color(red)(cancel(color(black)("mL NaCHO"_2))) × ("0.25 mmol NaCHO"_2)/(1 color(red)(cancel(color(black)("mL NaCHO"_2)))) = "12.5 mmol NaCHO"_2#
#"Amount of Na"^"+" = 12.5 color(red)(cancel(color(black)("mmol NaCHO"_2))) × (1 "mmol Na"^"+")/(1 color(red)(cancel(color(black)("mmol NaCHO"_2)))) = "12.5 mmol Na"^"+"#
#color(white)(mmmmmm)"HCl" + "NaCHO"_2 → "HCHO"_2 + "H"_2"O"#
#"I/mmol": color(white)(mll)12.5 color(white)(mmll)"12.5color(white)(mmmmm)0#
#"C/mmol": color(white)(m)"-12.5"color(white)(mml)"-12.5"color(white)(mmml)"+12.5"#
#"E/mmol": color(white)(mm)0color(white)(mmmml)0color(white)(mmmmm)12.5#
Equilibrium concentrations
We have a solution that contains #"12.5 mmol HCHO"_2# in 100.0 mL of solution.
#["HCHO"_2] = "12.5 mmol"/"100.0 mL" = "0.125 mmol/mL = 0.125 mol/L"#
The equilibrium involved is
#"HCHO"_2 +"H"_2"O" ⇌ "H"_3"O"^"+" + "CHO"_2^"-"; K_text(a) = 1.77 × 10^"-4"#
We can use another ICE table to calculate the concentrations of the species involved.
#color(white)(mmmmmml)"HCHO"_2 +"H"_2"O" ⇌ "H"_3"O"^"+" + "CHO"_2^"-"#
#"I/mol·L"^"-1": color(white)(mll)0.125 color(white)(mmmmmmml)0color(white)(mmmm)0#
#"C/mol·L"^"-1": color(white)(mm)"-"xcolor(white)(mmmmmmml)"+"xcolor(white)(mmm)"+"x#
#"E/mol·L"^"-1": color(white)(m)"0.125-"xcolor(white)(mmmmmml)xcolor(white)(mmmm)x#
# K_text(a) = (["H"_3"O"^+]["HCHO"_2^"-"])/(["HCHO"_2]) = x^2/(0.125-x) = 1.77 × 10^"-4"#
Check for negligibility
#0.125/(1.77 × 10^"-4") = 706 > 400#. ∴ #x ≪ 0.125#.
Then,
#x^2/0.125 = 1.77 × 10^"-4"#
#x^2 = 0.125 × 1.77 × 10^"-4" = 2.21 × 10^"-5"#
# x = 4.7 × 10^"-3"#
Calculate the concentration of each species
#["Na"^"+"] = "12.5 mmol"/"100 mL"= "0.125 mol/L"#
#["Cl"^"-"] = "12.5 mmol"/"100 mL"= "0.125 mol/L"#
#["H"^"+"] = xcolor(white)(l)"mol/L" = 4.7 × 10^"-3"color(white)(l)"mol/L"#
#["HCHO"_2^"-"] = xcolor(white)(l)"mol/L" = 4.7 × 10^"-3"color(white)(l)"mol/L"#
#"HCHO"_2] = (0.125 - x) color(white)(l)"mol/L" = (0.125 - 4.7 × 10^"-3")color(white)(l) "mol/L = 0.120 mol/L"#