Write the complex number #(-1-i)^6# on the #re^θ = r(cos θ + i sin θ)# form (polar form) and the #a+ ib# form?

enter image source here

This is the solution, but can someone explain how this happen?

1 Answer
Apr 10, 2018

We know #z=-1-i=re^(itheta)#

#r=sqrt((-1)^2+(-1)^2)=sqrt(2)#
#theta=tan^-1(1)=pi/4#

However, as #-1-i# is in quadrant 3, we must add #pi# to #theta# to get #(5pi)/4#

We now have #z=sqrt2e^(i(5pi)/4)#

#(-1-i)^6=z^6=(sqrt2e^(i(5pi)/4))^6=(sqrt2)^6(e^(i(5pi)/4))^6=8e^(i(15pi)/2)=8e^(i(3pi)/2)#

In terms of rotation #(15pi)/2-=(3pi)/2#

#8e^(i(3pi)/2)=8(cos((3pi)/2)+isin((3pi)/2))=8(0-i)=-8i#