How do you integrate #int (cosx)(coshx)# using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Ultrilliam Apr 11, 2018 below Explanation: #I = int \ cosx \ coshx \ dx# #= int \ cosx \ d(sinh x)# #= cosx sinh x - int \ d( cosx) \ sinh x# #= cosx sinh x + int sin x \ sinh x \ dx# #= cosx sinh x + int sin x \ d(cosh x)# #= cosx sinh x + (sin x cosh x - int \ d(sin x )\ cosh x)# #= cosx sinh x + sin x cosh x - I# #implies I = 1/2 ( cosx sinh x + sin x cosh x) + C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 2278 views around the world You can reuse this answer Creative Commons License