What is #intln(x^2-1)dx#?

2 Answers
Apr 14, 2018

# x ln(x^2-1)-2x+ln |(x+1)/(x-1)|+C#

Explanation:

We integrate this by parts

#int ln(x^2-1) dx = int ln(x^2-1)*1 dx#
#qquad = ln(x^2-1) int 1dx-int(d/dx(ln(x^2-1))times int 1dx)dx#
#qquad = x ln(x^2-1) -int ((2x)/(x^2-1)*x)dx#
#qquad = x ln(x^2-1)-int (2x^2-2+2)/(x^2-1)dx#
#qquad = x ln(x^2-1)-int 2dx+ int (1/(x+1)-1/(x-1))dx#
#qquad = x ln(x^2-1)-2x+ln |(x+1)/(x-1)|+C#

Apr 14, 2018

The final integral is #xln|x^2-1|+ln|(x+1)/(x-1)|-2x+C#.

Explanation:

Use the log properties to split up the integral:

#color(white)=intln(x^2-1)dx#

#=intln((x+1)(x-1))dx#

#=int(ln(x+1)+ln(x-1))dx#

#=intln(x+1)dx+intln(x-1)dx#

Say #I_1# is the left integral and #I_2# is the right one. Solve each one separately:

#I_1=intln(x+1)dx#

Let #u=x+1# which means #du=dx#:

#color(white)(I_1)=intlnu# #du#

Use the DI method (an easier way to understand integration by parts) to solve the integral:

#I_1=lnu*u-int 1/u*u# #du#

#color(white)(I_1)=u lnu-int 1du#

#color(white)(I_1)=u lnu-u+C#

#color(white)(I_1)=(x+1)ln(x+1)-(x+1)+C#

#color(white)(I_1)=(x+1)ln(x+1)-x-1+C#

#color(white)(I_1)=(x+1)ln(x+1)-x+C#

Do the same for the other integral:

#I_2=intln(x-1)dx#

Let #u=x-1# which means #du=dx#:

#color(white)(I_2)=intlnu# #du#

Same integral as before:

#color(white)(I_2)=u lnu-u+C#

#color(white)(I_2)=(x-1)ln(x-1)-(x-1)+C#

#color(white)(I_2)=(x-1)ln(x-1)-x+1+C#

#color(white)(I_2)=(x-1)ln(x-1)-x+C#

Combine the two integrals:

#color(white)=intln(x^2-1)dx#

#=I_1+I_2#

#=(x+1)ln(x+1)-x+C+(x-1)ln(x-1)-x+C#

#=(x+1)ln(x+1)+(x-1)ln(x-1)-2x+C#

You could leave this as your answer, or expand the multiplication and use log rules to simplify a little further:

#=xln(x+1)+ln(x+1)+xln(x-1)-ln(x-1)-2x+C#

#=x(ln(x+1)+ln(x-1))+ln(x+1)-ln(x-1)-2x+C#

#=xln(x^2-1)+ln((x+1)/(x-1))-2x+C#

Lastly, add absolute value bars to the #ln#s to increase the domain:

#=xln|x^2-1|+ln|(x+1)/(x-1)|-2x+C#

If you bring the #x# coefficient into the #ln# as an exponent, you can condense the integral a lot, looking like this:

#=ln(|x+1|^(x+1)|x-1|^(x-1))-2x+C#

That's the integral. Hope this helped!