Use the log properties to split up the integral:
#color(white)=intln(x^2-1)dx#
#=intln((x+1)(x-1))dx#
#=int(ln(x+1)+ln(x-1))dx#
#=intln(x+1)dx+intln(x-1)dx#
Say #I_1# is the left integral and #I_2# is the right one. Solve each one separately:
#I_1=intln(x+1)dx#
Let #u=x+1# which means #du=dx#:
#color(white)(I_1)=intlnu# #du#
Use the DI method (an easier way to understand integration by parts) to solve the integral:
#I_1=lnu*u-int 1/u*u# #du#
#color(white)(I_1)=u lnu-int 1du#
#color(white)(I_1)=u lnu-u+C#
#color(white)(I_1)=(x+1)ln(x+1)-(x+1)+C#
#color(white)(I_1)=(x+1)ln(x+1)-x-1+C#
#color(white)(I_1)=(x+1)ln(x+1)-x+C#
Do the same for the other integral:
#I_2=intln(x-1)dx#
Let #u=x-1# which means #du=dx#:
#color(white)(I_2)=intlnu# #du#
Same integral as before:
#color(white)(I_2)=u lnu-u+C#
#color(white)(I_2)=(x-1)ln(x-1)-(x-1)+C#
#color(white)(I_2)=(x-1)ln(x-1)-x+1+C#
#color(white)(I_2)=(x-1)ln(x-1)-x+C#
Combine the two integrals:
#color(white)=intln(x^2-1)dx#
#=I_1+I_2#
#=(x+1)ln(x+1)-x+C+(x-1)ln(x-1)-x+C#
#=(x+1)ln(x+1)+(x-1)ln(x-1)-2x+C#
You could leave this as your answer, or expand the multiplication and use log rules to simplify a little further:
#=xln(x+1)+ln(x+1)+xln(x-1)-ln(x-1)-2x+C#
#=x(ln(x+1)+ln(x-1))+ln(x+1)-ln(x-1)-2x+C#
#=xln(x^2-1)+ln((x+1)/(x-1))-2x+C#
Lastly, add absolute value bars to the #ln#s to increase the domain:
#=xln|x^2-1|+ln|(x+1)/(x-1)|-2x+C#
If you bring the #x# coefficient into the #ln# as an exponent, you can condense the integral a lot, looking like this:
#=ln(|x+1|^(x+1)|x-1|^(x-1))-2x+C#
That's the integral. Hope this helped!