If # (1+x^2)y_(n+1)+(2nx-m)y_n+n(n-1)y_(n-1)=0 #?
2 Answers
Induction Proof - Hypothesis
We seek to prove that:
If
# y=e^(mtan^(-1)x) # , then:
# #
# (1+x^2)y_(n+1)+(2nx-m)y_n+n(n-1)y_(n-1)=0 # ..... [A]
Where
Induction Proof - Base case:
Differentiating wrt
# y_1 = e^(mtan^(-1)x) d/dx (mtan^(-1)x)#
# \ \ \ = (m \ e^(mtan^(-1)x) )/(1+x^2) #
# y_2 = m \ ( (1+x^2)(m \ (e^(mtan^(-1)x) )/(1+x^2)) - (2x)(e^(mtan^(-1)x)) ) / (1+x^2)^2#
# \ \ \ = (m(m-2x)e^(mtan^(-1)x) ) / (1+x^2)^2 #
And , when
# LHS = (1+x^2)y_(1)+(2x-m)y_1+1(0)y_(0)#
# \ \ \ \ \ \ \ \ = (1+x^2)((m(m-2x)e^(mtan^(-1)x) ) / (1+x^2)^2 )+(2x-m)((m \ e^(mtan^(-1)x) )/(1+x^2)) #
# \ \ \ \ \ \ \ \ = ((m(m-2x)+m(2x-m))/(1+x^2)) \ e^(mtan^(-1)x#
# \ \ \ \ \ \ \ \ = 0 #
And
Induction Proof - General Case
Now, Let us assume that the given result [A] is true when
# (1+x^2)y_(k+1)+(2kx-m)y_k+k(k-1)y_(k-1)=0 # ..... [B]
Now, let us differentiate the expression [B] using the product rule:
# (1+x^2)y_(k+1)+(2kx-m)y_k+k(k-1)y_(k-1)=0 #
# :. (1+x^2)y_(k+2) + (2x)y_(k+1) + (2kx-m)y_(k+1) + (2k)y_k + k(k-1)y_(k) #
# :. (1+x^2)y_(k+2) + (2x + 2kx-m)y_(k+1) + (2k + k(k-1))y_(k) #
# :. (1+x^2)y_(k+2) + (2(k+1)x -m)y_(k+1) + k(k+1)y_(k) #
# :. (1+x^2)y_((k+1)+1) + (2(k+1)x -m)y_(k+1) + (k+1)((k+1)-1)y_((k+1)-1) #
Which is the given expression [A], with
Induction Proof - Summary
So, we have shown that if the given result [A] is true for
Induction Proof - Conclusion
Then, by the process of mathematical induction the given result [A] is true for
Hence we have:
# (1+x^2)y_(n+1)+(2nx-m)y_n+n(n-1)y_(n-1)=0 \ \ \ \ # QED
See below
Explanation:
Assume it's true for n, then:
Differentiate again:
Collect terms:
This is
So if it's true for
We can now try
We need:
-
#D_x(e^(m tan^(-1)(x))) = (m e^(m tan^(-1)(x)))/(x^2 + 1) # -
#D_x^2(e^(m tan^(-1)(x))) = (m (m - 2 x) e^(m tan^(-1)(x)))/(x^2 + 1)^2 #
Plug into
So, by induction, it's true for