#color(white)=int# #tan(sqrtx)/sqrtx# #dx#
Let #u=sqrtx#, which means #du=1/(2sqrtx)# #dx# and #dx=2sqrtx# #du#:
#=int# #tan(u)/sqrtx# #2sqrtx# #du#
#=int# #tan(u)/color(red)cancelcolor(black)sqrtx# #2color(red)cancelcolor(black)sqrtx# #du#
#=int# #tan(u)*2# #du#
#=2int# #tan(u)# #du#
#=2int# #sin(u)/cos(u)# #du#
Let #w=cos(u)#, which means #dw=-sin(u)# #du# and #du=-(dw)/sin(u)#:
#=2int# #sin(u)/w*-(dw)/sin(u)#
#=2int# #color(red)cancelcolor(black)sin(u)/w*-(dw)/color(red)cancelcolor(black)sin(u)#
#=-2int# #1/w# #dw#
#=-2ln|w|+C#
#=-2ln|cos(u)|+C#
#=-2ln|cos(sqrtx)|+C#
If you want, you can bring the #-2# into the natural log as an exponent:
#=ln|(cos(sqrtx))^-2|+C#
#=ln|1/(cos(sqrtx))^2|+C#
#=ln|1/(cos^2(sqrtx))|+C#
#=ln|sec^2(sqrtx)|+C#
That's the solved integral. Hope this helped!