If #sinx=1/sqrt3#, can anyone find the exact value of #tan2x# please?

1 Answer
Apr 16, 2018

#sinx = "opposite side"/"hypotenuse"#

Let #k# be the common multiple,

Hence, one of the sides (opposite side) will be #1k# and the hypotenuse will be, #sqrt3k#

So the other (adjacent side) would be #sqrt((sqrt3k)^2- (k)^2# #["applying Pythagoras theorem"]#

#=> sqrt(2k^2) = sqrt2 k#

#color(white)(wwww#

Now, #tanx = "opposite side"/"adjacent side" = 1/sqrt2#

#tan2x= (2tanx)/(1-tan^2x)#

#tan2x= (2(1/sqrt2))/(1-(1/2))#

#tan2x= (sqrt2)/(1/2) = 2sqrt2#

Alternate way,

#tan2x=(sin2x)/(cos2x) = (2sinxcosx)/(1-2sin^2x)#

#=> (2(1/sqrt3)(sqrt2/sqrt3))/(1-2(1/3))#

#=> ((2sqrt2)/3)/((3-2)/3) = 2sqrt2#