Find the value of a such that #x-2# is the factor of polynomial #x^4+ ax^3+2x^2-3x#?

2 Answers
Apr 17, 2018

#a=-9/4#

Explanation:

#"using the "color(blue)"factor theorem"#

#"since "(x-2)" is a factor then "f(2)=0#

#rArr2^4+a(2)^3+2(2)^2-3(2)=0#

#rArr16+8a+8-6=0#

#rArr8a=-18rArra=18/8=9/4#

Apr 17, 2018

#a = -9/4#

Explanation:

Begin by removing a factor of x:

#x^4+ ax^3+2x^2-3x = x(x^3+ax^2+2x-3)#

The reduced question is find the value of #a# such that:

#x^3+ax^2+2x-3 = (x-2)(bx^2+cx+d)#

Multiply the right side:

#x^3+ax^2+2x-3 = x(bx^2+cx+d)- 2(bx^2+cx+d)#

#x^3+ax^2+2x-3 = bx^3+cx^2+dx- 2bx^2-2cx-2d#

Combine like terms on the right:

#x^3+ax^2+2x-3 = bx^3+(c-2)x^2+(d-2c)x-2d#

We observe that #b = 1#:

#x^3+ax^2+2x-3 = x^3+(c-2)x^2+(d-2c)x-2d#

Also, #d = 3/2#

#x^3+ax^2+2x-3 = x^3+(c-2)x^2+(3/2-2c)x-3#

#2 = 3/2-2c#

#1/2=-2c#

#c = -1/4#

#x^3+ax^2+2x-3 = x^3+(-1/4-2)x^2+(3/2-2(-1/4))x-3#

#x^3+ax^2+2x-3 = x^3+(-1/4-2)x^2+2x-3#

#a = -9/4#

check:

#(x-2)(x^2-1/4x+3/2)#

#x(x^2-1/4x+3/2)-2(x^2-1/4x+3/2)#

#x^3-1/4x^2+3/2x-2x^2+1/2x-3#

#x^3+(-1/4-2)x^2+(3/2+1/2)x-3#

#x^3-9/4x^2+2x-3#

This checks.