How to find out the derivative of (ln2)^x ?

1 Answer
Apr 18, 2018

f'(x)=ln(ln(2))*ln^x(2)

Explanation:

f(x)=ln^x(2)
because u=e^ln(u) and ln(a^b)=bln(a)
f(x)=e^(xln(ln(2))
Because (e^(kx))'=ke^(kx)
f'(x)=ln(ln(2))e^(xln(ln(2))
f'(x)=ln(ln(2))*ln^x(2)
\0/ here's our answer!