How do you evaluate #int cot^5(2x) dx#?

1 Answer
Apr 19, 2018

#I=1/8(4ln(sin(2x))-csc^4(2x)+4csc^2(2x))+C#

Explanation:

We want to integrate

#I=intcot^5(2x)dx#

Make a substitution #color(red)(u=2x=>du=2dx#

#I=1/2intcot^5(u)du#

#color(white)(I)=1/2int((cos^2(u))^2cos(u))/sin^5(u)du#

#color(white)(I)=1/2int((1-sin^2(u))^2cos(u))/sin^5(u)du#

Make a substitution #color(red)(s=sin(u)=>ds=cos(u)du#

#I=1/2int(1-s^2)^2/s^5ds#

#color(white)(I)=1/2int1/s+1/s^5-2 1/s^3ds#

#color(white)(I)=1/2(ln(s)-1/(4s^4)+1/s^2)+C#

#color(white)(I)=1/8(4ln(s)-1/s^4+4/s^2)+C#

Substitute back #color(red)(s=sin(u)# and #color(red)(u=2x#

#I=1/8(4ln(sin(2x))-csc^4(2x)+4csc^2(2x))+C#