How do you find the limit in the following question?

#limxrarr∞#

#(x^3-2x^2)^(1/3) + (x^3-x^2)^(1/3) - (8x^3+4x^2)^(1/3)#

1 Answer
Apr 21, 2018

#-4/3#

Explanation:

We use the binomial expansion for general index #n# :

#(1+z)^n = 1+nz+(n(n-1))/(2!)z^2+...#

for each of the three terms

#(x^3-2x^2)^(1/3) = x(1-2/x)^(1/3)#
#qquad = x(1-1/3 times 2/x+O(1/x^2))#
#qquad = x-2/3+O(1/x)#

#(x^3-x^2)^(1/3) = x(1-1/x)^(1/3) #
#qquad = x(1-1/3 times 1/x+O(1/x^2))#
#qquad = x-1/3+O(1/x)#

#(8x^3+4x^2)^(1/3) = 2x(1+1/(2x))^(1/3) #
#qquad = 2x(1+1/3 times 1/(2x)+O(1/x^2))#
#qquad = 2x+1/3+O(1/x)#

Combining these, we get

#(x^3-2x^2)^(1/3) + (x^3-x^2)^(1/3) - (8x^3+4x^2)^(1/3)#
#qquad = [x-2/3+O(1/x)]+[x-1/3+O(1/x)]#
#qquad -[2x+1/3+O(1/x)]#
#qquad = -4/3+O(1/x)#

Thus, the limit of this expression as #x to oo# is #-4/3#