X-y = π/2 cotx. cosy +siny=?

1 Answer
Apr 21, 2018

If #x-y=pi/2#, then #cotx*cosy+siny=0#

Explanation:

Assuming you meant #cotx *cosy + siny#.

#color(blue)("Method 1":#

Let #color(Red)(sigma = cotxcosy+siny#. We know that #cotx = cosx/sinx#, so we have:

#sigma = (cosxcosy)/sin x + siny#

Let's get rid of the #sin x# denominator, by multiplying both sides by it.

#sigmacolor(blue)(sinx)=cosxcosy+sinxsiny#

Notice how

#cosxcosy+sinxsiny=cos(x-y)#.

#:. sigmacolor(blue)sinx = cos(x-y)#

But we know that #x-y = pi/2#, so we have

#sigmacolor(blue)sinx=cos(pi/2)=0#

From this, we get that either #sigma# or #sinx# is equal to zero.

However, only #color(red)("one")# of these solutions is true.

If #sinx =0#, then #cotx# is undetermined, because we would have to divide by #0#.

Thus,

#color(red)(sigma=0)#

#color(red)(cotxcosy+siny=0#, if #x-y=pi/2#

#color(blue)("Method 2:"#

If #x-y = pi/2#, then #x=pi/2+y#. Substituting it into our equation, we have

#cot(pi/2+y)cosy+siny = cos(pi/2+y)/sin(pi/2+y) * cosy + siny#

We have to use the sum formulas for trigonometric functions:

#cos(a+b)=cosacosb-sinasinb#
#sin(a+b)=sinacosb+cosasinb#

#:. cos(pi/2+y)=cos(pi/2)cosy-sin(pi/2)siny#

#= 0 *cosy-1*siny=-siny#

#:. sin(pi/2+y)=sin(pi/2)cosy+cos(pi/2)siny#

#=1*cosy+0*siny=cosy#

Thus, we get

#cot(pi/2+y)cosy+siny=-siny/cosy * cosy+siny = 0#

#color(red)(cotxcosy+siny=0#, if #x-y=pi/2#