How to solve this question? Given that: # f(x,y,z)= x^3yz^2# Find # (partial ^2f)/(partial x^2)# and #(partial^2f)/(partial y^2)#. Show that #(partial^2f)/(partial x partial y)=(partial ^2f)/(partial y partial x)# ?

Hello, I am struggling with this question. I would be thankful if you could help me solving it.
Given that: # f(x,y,z)= x^3yz^2#
Find:
# (partial ^2f)/(partial x^2)# and #(partial^2f)/(partial y^2)#

show that:
#(partial^2f)/(partial x partial y)=(partial ^2f)/(partial y partial x)#

1 Answer
Apr 24, 2018
  • #f_(x\x)= 6x \ y \ z^2#

  • #f_(y y) = 0#

  • #f_(x\y)= 3x^2 \ z^2 = f_(yx)#

Explanation:

#f(x,y,z)= x^3 \ y \ z^2#

Initially, with respect to #x#:

  • #f_x= 3x^2 \ y \ z^2#

  • #f_(x\x)= 6x \ y \ z^2#

  • #f_(x\y)= 3x^2 \ z^2#

Initially, with respect to #y#:

  • #f_y = x^3 \ z^2#

  • #f_(y y) = 0#

  • #f_(yx) = 3x^2 \ z^2#