Which appropriate trigonometric substitution is needed to evaluate: #intdx/sqrt(x^6-x^8)# ? Thank you so much in advance! Greetings

3 Answers
Apr 24, 2018

# int \ 1/(sqrt(x^6-x^8)) \ dx = 1/4ln|(sqrt(1-x^2)-1)/(sqrt(1-x^2)+1)| - (sqrt(1-x^2))/(2x^2) + C #

Explanation:

We seek:

# I = int \ 1/(sqrt(x^6-x^8)) \ dx #
# \ \ = int \ 1/(sqrt(x^6(1-x^2))) \ dx #
# \ \ = int \ 1/(x^3sqrt(1-x^2)) \ dx #

Consider a substitution:

# u^2 = 1-x^2 => 2u(du)/dx = -2x \ \ \ #, and #x^2 = 1-u^2 #

Giving us:

# I = int \ (-1/(x))/( x^3sqrt(1-x^2)) \ (-x) \ dx #

# \ \ = - \ int \ 1/( (x^2)^2sqrt(1-x^2)) \ (-x) \ dx #

# \ \ = - \ int \ 1/( (1-u^2)^2 \ u) \ u \ du #

# \ \ = - \ int \ 1/( (1-u^2)^2) \ du #

# \ \ = - \ int \ 1/( (u+1)^2(u-1)^2) \ du #

And we can perform a partial fraction decomposition (omitted), on the integrand, giving us:

# 1/( (u+1)^2(u-1)^2) -= 1/4{1/(u+1)+1/(u+1)^2-1/(u-1)+1/(u-1)^2} #

Thus we can write:

# -4I = int 1/(u+1)+1/(u+1)^2-1/(u-1)+1/(u-1)^2 \ du #

And we can integrate to get:

# -4I = ln|u+1| -1/(u+1) -ln|u-1| -1/(u-1) #

# :. 4I = ln|u-1| - ln|u+1| + 1/(u+1) + 1/(u-1) #
# \ \ \ \ \ \ \ \ = ln|(u-1)/(u+1)| + ((u-1)+(u+1))/((u+1)(u-1)) #
# \ \ \ \ \ \ \ \ = ln|(u-1)/(u+1)| + (2u)/(u^2-1) #

Then we restore the substitution:

# 4I = ln|(sqrt(1-x^2)-1)/(sqrt(1-x^2)+1)| + (2sqrt(1-x^2))/(1-x^2-1) #

# \ \ \ = ln|(sqrt(1-x^2)-1)/(sqrt(1-x^2)+1)| - (2sqrt(1-x^2))/(x^2) #

Finally:

# I = 1/4ln|(sqrt(1-x^2)-1)/(sqrt(1-x^2)+1)| - (sqrt(1-x^2))/(2x^2) #

Apr 24, 2018

#-1/2(sqrt(1-x^2)/x^2+ln((1+sqrt(1-x^2))/x))#

Explanation:

#color(blue)("The Trigonometric Substitution will be either " x=sinu " or " x=cosu#
#intdx/sqrt(x^6-x^8)=intdx/sqrt(x^6(1-x^2))#

#=intdx/(x^3sqrt(1-x^2)#

Applying Trigonometric Substitution

#x=sinu#

#dx=cosu*du#

#=intdx/(x^3sqrt(1-x^2))=int(cosu*du)/(sin^3u*sqrt(1-sin^2u)#

#=int(cosu*du)/(sin^3u*cosu)#

Simplify

#=intcsc^3udu#

let #I=intcsc^3udu# #color(green)(rarr"(1)#

Apply Integration by Parts

#=-intcscu*d(cotu)#

#=-cscucotu-(-int-cot^2ucscu*du)#

#color(green)(cot^2u=csc^2u-1#

#=-cscucotu-int(csc^3u-cscu)du#

#=-cscucotu-intcsc^3u+intcscu#

From #color(green)("(1)#

#I=-cscucotu-I-ln(cscu+cotu)#

#2I=-cscucotu-ln(cscu+cotu)#

#I=-1/2(cscucotu+ln(cscu+cotu))#

Reverse the Trigonometric Substitution

#I=-1/2(1/x*sqrt(1-x^2)/x+ln(1/x+sqrt(1-x^2)/x)#

Simplify

#I=-1/2(sqrt(1-x^2)/x^2+ln((1+sqrt(1-x^2))/x))#

I hope this was helpful.

Apr 24, 2018

#I=-sqrt(1-x^2)/(2x^2)+1/2ln|(1-sqrt(1-x^2))/x|+C#

Explanation:

Here,

#I=int1/sqrt(x^6-x^8)dx#

#=int1/(x^3sqrt(1-x^2))dx#

Let, #x=sint=>dx=costdt#

So,

#I=int1/(sin^3tsqrt(1-sin^2t))costdt#

#=int1/(sin^3tcancelcost)cancelcostdt#

#color(red)(I=intcsc^3tdt...to(A)#

#I=intcsct*csc^2tdt#

#"Using "color(blue)"Integration by Parts"#

#color(blue)(int(u*v)dt=uintvdt-int(u'intvdt)dt#

Take, #u=csct and v=csc^2t#

#u'=-csctcott and intvdt=-cott#

#:.I=csct(-cott)-int(-csctcott)(-cott)dt#

#=-csctcott-intcot^2tcsctdt#

#=-csctcott-int(csc^2t-1)csctdt#

#=-csctcott-intcsc^3tdt+intcsctdt#

#I=-csctcott-color(red)I+ln|csct-cott|+cto #from #color(red)((A))#

#:.I+I=-csctcott+ln|csct-cott|+c#

#2I=-1/sintxxcost/sint+ln|1/sint-cost/sint|+c#

#2I=-1/sintxxsqrt(1-sin^2t)/sint+ln|1/sint-sqrt(1-sin^2t)/sint|+c#

Subst.back ,#sint=x#

#2I=-1/x xxsqrt(1-x^2)/x+ln|1/x-sqrt(1-x^2)/x|+c#

#2I=-sqrt(1-x^2)/x^2+ln|(1-sqrt(1-x^2))/x|+c#

#I=-sqrt(1-x^2)/(2x^2)+1/2ln|(1-sqrt(1-x^2))/x|+C, where,C=c/2#