Find the solution of the differential equation that satisfies the given initial conditions?
(Just give me tips, you don't have to do the whole thing)
a. #yy'=x\sinx# and #y(0)=-1#
b. #y'\tanx=y+8# , #y(\pi/3)=8# and #0\ltx\lt\pi/2#
c. #xy'=y+x^2\sinx# and #y(\pi)=0#
(Just give me tips, you don't have to do the whole thing)
a.
b.
c.
1 Answer
# (a) \ y^2 = 2sinx -2xcosx + 1 #
# (b) \ y = (32sqrt(3))/3 sinx - 8 #
# (c) \ y = -xcosx -x #
Explanation:
Part (a):
# yy'=xsinx # with#y(0)=-1#
This is separable, so by "separating the variables" , we get:
# int \ y \ dy = int \ xsinx \ dx # ..... [A]
To integrate the RHS we apply IBP
Let
# { (u,=x, => (du)/dx,=1), ((dv)/dx,=sinx, => v,=-cosx ) :}#
Then plugging into the IBP formula:
# int \ u (dv)/dx \ dx = uv - int \ v (dv)/dx \ dx #
So we have:
# int \ xsinx \ dx = -xcosx + int \ cosx \ dx = sinx -xcosx #
Thus if we integrate [A] we get:
# 1/2 y^2 = sinx -xcosx + C #
Applying the initial conditions:
# y(0)=-1=> 1/2 = 0 -0 + C #
Thus we gain the particular solution
# 1/2 y^2 = sinx -xcosx + 1/2 #
# :. y^2 = 2sinx -2xcosx + 1 #
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part (b):
# y' tanx = y+8 # with#y(pi/3)=8# and#0 lt x lt pi/2 #
This is also separable:
# 1/(y+8)y' = cotx #
We can "separate the variables" to get:
# int \ 1/(y+8) \ dy = int \ cotx \ dx #
Which is trivial to integrate:
# ln|y+8| = ln|sinx| + C #
Applying the initial conditions:
# y(pi/3)=8 => ln|8+8| = ln|sin (pi/3)| + C #
# :. ln16 = ln(sqrt(3)/2) + C => C = ln((32sqrt(3))/3) #
Thus we gain the particular solution:
# ln|y+8| = ln|sinx| + ln((32sqrt(3))/3) #
# :. y+8 = (32sqrt(3))/3 sinx #
# :. y = (32sqrt(3))/3 sinx - 8 #
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part (c):
# xy' = y + x^2 sinx # with#y(pi)=0#
We can write as:
# y' - y/x = x sinx #
Which is of the form:
# dy/dx + P(x)y=Q(x) #
So, we can construct an Integrating Factor:
# I = exp(int \ P(x) \ dx #
# \ \ = exp(int \-1/x \ dx) #
# \ \ = exp(-ln(x)) #
# \ \ = 1/x #
And if we multiply the DE by this Integrating Factor,
# 1/x \ y' - 1/x^2 \ y = 1/x \ x sinx #
# :. d/dx (1/x \ y) = sinx #
This is now separable, so we can "separate the variables" to get:
# y/x = int \ sinx \ dx #
Which is trivial to integrate:
# y/x = -cosx + C #
Applying the initial conditions:
# y(pi)=0 => 0 = -cospi + C => C = -1 #
Thus we gain the particular solution:
# y/x = -cosx -1 #
# :. y = -xcosx -x #