#y'=x/y-x/(1-y)# using Separation of Variables?
1 Answer
# 1/2(1-2y)^2-ln|1-2y| = 4x^2 + A #
Explanation:
We have:
# y' = x/y - x/(1-y) #
Which we can write as:
# y' = x{1/y - 1/(1-y)} #
# \ \ \ = x{((1-y)-y)/(y(1-y))} #
# \ \ \ = x{(1-2y)/(y(1-y))} #
# :. (y(1-y))/(1-2y) \ dy/dx = x #
This is a separable DE, so we can "separate the variables":
# int \ (y(1-y))/(1-2y) \ dy = int \ x \ dx # ..... [A]
To integrate the LHS, consider:
# I = int \ (y(1-y))/(1-2y) \ dy #
Along with a substitution:
# u = 1-2y => (du)/dy = -2 \ \ # and#y = (1-u)/2 #
Which gives us:
# I = int \ ((1-u)/2 (1-(1-u)/2))/(u)(-1/2) \ du #
# \ \ = -1/4 \ int \ ((1-u) ((2-1+u)/2))/(u) \ du #
# \ \ = 1/8 \ int \ ((u-1)(u+1))/(u) \ du #
# \ \ = 1/8 \ int \ (u^2-1)/(u) \ du #
# \ \ = 1/8 \ int \ u-1/u \ du #
# \ \ = 1/8 {1/2u^2-ln|u| } #
Using this result, we can now fully integrate [A], to get:
# 1/8 {1/2(1-2y)^2-ln|1-2y| } = 1/2x^2 + C #
# :. 1/2(1-2y)^2-ln|1-2y| = 4x^2 + A # , say
Which is the Implicit General Solution.