Integrate #(2x-1)(3x^2-3x+5)^8 #?

2 Answers
Apr 27, 2018

# 1/27(3x^2-3x+5)^9+C#.

Explanation:

Let, #I=int(2x-1)(3x^2-3x+5)^8dx#

Subst. #(3x^2-3x+5)=u :. (6x-3)dx=du, i.e., #

# (2x-1)dx=1/3du#.

#:. I=intu^8*1/3du#,

#=1/3*u^(8+1)/(8+1)#,

#=1/27*u^9#.

Since, #u=(3x^2-3x+5)#, we have,

#I=1/27(3x^2-3x+5)^9+C#.

Apr 27, 2018

#int(2x-1)(3x^2-3x+5)^8dx=1/27(3x^2-3x+5)^9+C#

Explanation:

.

#int(2x-1)(3x^2-3x+5)^8dx#

Let #u=3x^2-3x+5#

#du=(6x-3)dx=3(2x-1)dx#

#dx=(du)/(3(2x-1))#

Let's substitute:

#int(2x-1)(3x^2-3x+5)^8dx=int(2x-1)u^8(du)/(3(2x-1))=intcancelcolor(red)((2x-1))u^8(du)/(3cancelcolor(red)((2x-1)))=int1/3u^8du=1/3intu^8du=1/3*1/9u^9+C#

Now, we can substitute back:

#int(2x-1)(3x^2-3x+5)^8dx=1/27(3x^2-3x+5)^9+C#