How do you differentiate #f(x)=e^x*sin(5x^2)# using the product rule?
2 Answers
Explanation:
Let
Therefore
and to find
so... let
and
so the differential of
from there you use the rest of product rule so...
so...
Explanation:
#"Given "f(x)=g(x)h(x)" then"#
#f'(x)=g(x)h'(x)+h(x)g'(x)larrcolor(blue)"product rule"#
#g(x)=e^xrArrg'(x)=e^x#
#h(x)=sin(5x^2)larrcolor(blue)"use chain rule"#
#rArrh'(x)=cos(5x^2)xxd/dx(5x^2)#
#color(white)(rArrh'(x))=10xcos(5x^2)#
#rArrf'(x)=10xcos(5x^2)e^x+sin(5x^2)e^x#
#color(white)(rArrf'(x))=e^x(10xcos(5x^2)+sin(5x^2))#