I have to answer these equations but I don't know how to?

enter image source here

2 Answers
May 2, 2018

#tan(-x)=-0.5#
#sin(-x)=-0.7#
#cos(-x)=0.2#
#tan(pi+x)=-4#

Explanation:

Tangent and Sine are odd functions. In any odd function, #f(-x)=-f(x)#. Applying this to tangent, #tan(-x)=-tan(x)#, so if #tan(x)=0.5#, #tan(-x)=-0.5#. The same process yields us #sin(-x)=-0.7#.

Cosine is an even function. In an even function, #f(-x)=f(x)#. In other words, #cos(-x)=cos(x)#. If #cos(x)=0.2#, #cos(-x)=0.2#.

Tangent is a function with a period of #pi#. Therefore, every #pi#, tangent will be the same number. As such, #tan(pi+x)=tan(x)#, so #tan(x)=-4#

May 2, 2018

If #tan x = .5# then #tan(-x)=-tan x = -.5#

If #sin x = .7# then #sin(-x) = -sin x =- .7#

If #cos x = .2# then #cos(-x) = cos x = .2 #

If #tan x = -4# then #tan(pi+x)=tan x= -4#

Explanation:

These are asking the basic question of what happens to a trig function when we negate its argument. Negating an angle means reflecting it in the #x# axis. This flips the sign of the sine, but leaves the cosine alone. So,

#cos (-x) = cos x#

#sin(-x) = -sin x#

#tan (-x) = {sin(-x)}/{cos(-x)} = -tan (x)#

When we add #pi# to an angle we flip the sign on both sine and cosine.

#cos(x + \pi) = - cos x #

#sin(x + \pi) = - sin x#

#tan(x+ \pi) = {cos(x+pi)}/{sin(x+pi)} = tan x#

With that as background, let's do the questions:

If #tan x = .5# then #tan(-x)=-tan x = -.5#

If #sin x = .7# then #sin(-x) = -sin x =- .7#

If #cos x = .2# then #cos(-x) = cos x = .2 #

If #tan x = -4# then #tan(pi+x)=tan x= -4#