Help please? Finding sequence

enter image source here

3 Answers
May 2, 2018

#1)#

#a_1 = 1#
#a_2 = 1^2+1 = 2#
#a_3 = 2^2+1 = 5#
#a_4 = 3^2+1 = 10#
#a_5 = 4^2 + 1 = 17#

#2)#

#a_1 = 1^2 + 2 xx 1 = 3#
#a_2 = 2^2 + 2 xx 2 = 8#
#a_3 = 3^2 + 2 xx 3 = 15#
#a_4 = 4^2 + 2 xx 4 = 24#
#a_5 = 5^2 + 2 xx 5 = 35#

May 2, 2018

#"see explanation"#

Explanation:

#(1)#

#"this is a "color(blue)"recurrence relationship"#

#"where each term is obtained by substituting the "#
#"previous term into the equation"#

#"the first term is given, that is "a_1=color(red)(1)#

#rArra_2=(color(red)(1))^2+1=1+1=color(blue)(2)#

#rArra_3=(color(blue)(2))^2+1=4+1=color(magenta)(5)#

#rArra_4=(color(magenta)(5))^2+1=25+1=color(purple)(26)#

#a_5=(color(purple)(26))^2+1=676+1=677#

#"the first 5 terms are "1,2,5,26,677#

#(2)#

#"obtain the terms in this sequence by substituting"#
#"1,2,3,4 and 5 into the n th term formula"#

#rArra_1=1^2-(2xx1)=1-2=-1#

#a_2=2^2-(2xx2)=4-4=0#

#a_3=3^2-(2xx3)=9-6=3#

#a_4=4^2-(2xx4)=16-8=8#

#a_5=5^2-(2xx5)=25-10=15#

#"the first 5 terms are "-1,0,3,8,15#

May 2, 2018

#color(red)((1))1,2,5,26,677.#
#color(red)((2))-1,0,3,8,15.#

Explanation:

#color(blue)((1) a_1=1), and#

#color(red)(a_n=(a_(n-1))^2+1#

#a_2=(a_(2-1))^2+1=(a_1)^2+1=(1)^2+1=1+1=2#

#a_3=(a_(3-1))^2+1=(a_2)^2+1=(2)^2+1=4+1=5#

#a_4=(a_(4-1))^2+1=(a_3)^2+1=(5)^2+1=25+1=26#

#a_5=(a_(5-1))^2+1=(a_4)^2+1=(26)^2+1=676+1=677#

Hence. first five terms :#1,2,5,26,677.#

#(2)#

#a_n=n^2-2n#

#a_1=(1)^2-2(1)=1-2=-1#

#a_2=(2)^2-2(2)=4-4=0#

#a_3=(3)^2-2(3)=9-6=3#

#a_4=(4)^2-2(4)=16-8=8#

#a_5=(5)^2-2(5)=25-10=15#

Hence. first five terms : #-1,0,3,8,15.#