How do you find the points where the graph of the function # r=e^theta# has horizontal tangents and what is the equation?

2 Answers
May 2, 2018

#theta = - pi/4, (3 pi)/4, .....#

Explanation:

Decompose polar into Cartesian as we are looking for slope wrt horizontal:

#x = r cos theta, qquad dx = dr cos theta - r sin theta \ d theta#

#y = r sin theta, qquad dy = dr sin theta + r cos theta \ d theta#

#(dy)/(dx) = (dr sin theta + r cos theta \ d theta)/( dr cos theta - r sin theta \ d theta)#

# = (r_theta sin theta + r cos theta)/( r_theta cos theta - r sin theta \ ) #

Now: #r = e^theta, qquad r_theta = e^ theta = r#

#implies (dy)/(dx) = (tan theta + 1)/( 1 - tan theta \ ) #

# (dy)/(dx) = 0 implies qquad tan theta = -1 #

  • #implies theta = - pi/4, (3 pi)/4, .....#

  • #r = e^(- pi/4), e^((3 pi)/4), .....#

You can take this further, eg: #lim_(theta to pi/2) (tan(theta) + 1)/(1 - tan(theta)) = -1# is maybe worth exploring.

May 2, 2018

Depending upon the chosen convention for the domain of #theta#

# theta = -pi/4,pi/4 \ \ # if #theta in [-pi,pi] #

Or:

# theta = pi/4, (3pi)/4 \ \ # if #theta in [0,2pi] #

Explanation:

We have a polar equation:

# r = e^(theta) #

We have a horizontal tangent when #(dy)/(d theta) = 0#

Using the cartesian relationship #y=rsin theta# then:

# y= e^(theta)sin theta #

So differentiating wrt #theta#, and applying the product rule, we have:

# (dy)/(d theta) = e^(theta)((d)/(d theta) sin theta ) + ((d)/(d theta) e^(theta))sin theta #

# \ \ \ \ \ = e^(theta)cos theta + e^(theta)sin theta #

We require #theta# st #(dy)/(d theta) = 0#, thus:

# (dy)/(d theta) = 0 => e^(theta)cos theta + e^(theta)sin theta #

# :. e^(theta)(cos theta + sin theta ) = 0 #

# :. cos theta + sin theta = 0 \ \ \ # as # e^(theta) gt 0 AA theta in RR #

# :. sin theta =- cos theta #

# :. tan theta =- 1#

And depending upon the chosen convention for the domain of #theta#, we have:

# theta = -pi/4,pi/4 \ \ # if #theta in [-pi,pi] #

Or:

# theta = pi/4, (3pi)/4 \ \ # if #theta in [0,2pi] #