Prove this by Mathematical Induction?
#2*7^n+3*5^n-5# is divisible by 24 #ninNN#
#2*7^n+3*5^n-5# is divisible by 24#ninNN#
1 Answer
See explanation...
Explanation:
Let
#2*7^n+3*5^n-5# is divisible by#24#
Base case
Putting
#2*7^color(blue)(0)+3*5^color(blue)(0)-5 = 2+3-5 = 0#
which is divisible by
So
Induction step
Suppose
That is:
#2*7^n+3*5^n-5 = 24k#
for some integer
Then:
#2*7^(n+1)+3*5^(n+1)-5#
#= 7 * (2*7^n) + 5 * (3 * 5^n) - 5#
#= 7 * (2*7^n) + 7 * (3 * 5^n) - 7*5 + 35 - 2 * (3 * 5^n) - 5#
#= 7 * (2*7^n + 3*5^n-5) + 30 - 2 * (3 * 5^n)#
#= 7 * 24k - 2*(3*5^n-15)#
#= 7 * 24k - 2*3*5(5^(n-1)-1)#
Note that:
#(x+1)^n = sum_(k=0)^n ((n),(k)) x^(n-k) = x sum_(k=0)^(n-1) ((n),(k)) x^(n-k) + 1#
Hence:
#5^(n-1)-1 = (4+1)^(n-1)-1 = 4m+1-1 = 4m#
for some integer
So:
#2 * 3 * 5*(5^(n-1)-1) = 2 * 3 * 5 * 4m = 24(5m)#
for some integer
Thus:
Conclusion
Having shown