What are the #x#-intercepts of the graph of #y=2x^2+x-10#?
1 Answer
May 3, 2018
Explanation:
#"to find the intercepts set y = 0"#
#rArr2x^2+x-10=0#
#"using the a-c method to factor the quadratic"#
#"the factors of the product "2xx-10=-20#
#"which sum to + 1 are - 4 and + 5"#
#"split the middle term using these factors"#
#2x^2-4x+5x-10=0larrcolor(blue)"factor by grouping"#
#rArrcolor(red)(2x)(x-2)color(red)(+5)(x-2)=0#
#"take out the "color(blue)"common factor "(x-2)#
#rArr(x-2)(color(red)(2x+5))=0#
#"equate each factor to zero and solve for x"#
#x-2=0rArrx=2#
#2x+5=0rArrx=-5/2#
graph{(y-2x^2-x+10)((x-2)^2+(y-0)^2-0.04)((x+5/2)^2+(y-0)^2-0.04)=0 [-10, 10, -5, 5]}