How do you factor 49b^2+70b+25?

2 Answers
May 3, 2018

#(7b+5)(7b+5)# or #(7b+5)^2#

Explanation:

#49b^2+70b+25#
#49=7*7#
#25=5*5#
Therefore, this could be a perfect square trinomial. Testing this:
#(7b+5)(7b+5)# Using FOIL:
#=49b^2+35b+35b+25#
#=49b^2+70b+25=49b^2+70b+25# Therefore, the factorization is
#(7b+5)(7b+5)# or #(7b+5)^2#

May 3, 2018

#(7b+5)^2#

Explanation:

#49b^2+70b+25" is a "color(blue)"perfect square"#

#•color(white)(x)(a+b)^2=a^2+2ab+b^2#

#49b^2=(7b)^2rArra=7b#

#25=(5)^2rArrb=5#

#"and "2ab=2xx7bxx5=70b#

#rArr49b^2+70b+25=(7b+5)^2#