How do you solve #6(3a+1)-30=3(2a-4)#?

2 Answers
May 8, 2018

#a=1#

Explanation:

Expand the terms first
#18a+6-30=6a-12#

Then shift the #a# terms to the left and the numbers to the right
#18a-6a=-12-6+30#
#12a=12#

Then divide both sides by 12
#a=1#

May 8, 2018

#a = 1#

Explanation:

#6(3a+1)-30 = 3(2a-4)#

First, to solve this, we use the distributive property, as shown here;
cdn.virtualnerd.com

Following this image, let's simplify #color(blue)(6(3a+1))#:
#6 * 3a + 6 * 1 = 18a + 6#

Now #color(blue)(3(2a-4))#:
#3 * 2a + 3 * -4 = 6a - 12#

Now let's put these back into the equation:
#18a + 6 - 30 = 6a - 12#

Combine #color(blue)(6 - 30) = -24#

#18a - 24 = 6a - 12#

Subtract #color(blue)(6a)# from both sides:
#18a - 24 quadcolor(blue)(-quad6a) = 6a - 12 quadcolor(blue)(-quad6a)#

#12a - 24 = -12#

Add #color(blue)24# to both sides:
#12a - 24 quadcolor(blue)(+quad24) = -12 quadcolor(blue)(+quad24)#

#12a = 12#

Divide both sides by #color(blue)(12)#:
#(12a)/color(blue)12 = 12/color(blue)12#

#a = 1#

Hope this helps!