Problem:
#intsqrtx/(x+5)dx#
Substitute #u->dx=2sqrtxdu#
Use:#x=u^2#
#2intu^2/(u^2+5)du#
Now solving:
#intu^2/(u^2+5)du#
Write #u^2# as #u^2+5-5# and split:
=#int((u^2+5)/(u^2+5)-5/(u^2+5))du#
=#int(1-5/(u^2+5))du#
Apply linearity:
=#int1du-5int1/(u^2+5)du#
Now solving:
#int1du#
Apply constant rule
=#u#
Now solving
=#int(1/u^2+5)du#
Substitute #v=u/sqrt5->du=sqrt5dv#
=#intsqrt5/(5v^2+5)dv#
=#1/sqrt5int1/(v^2+1)dv#
This is a standard integral:
#tan^-1v#
Plug in solved integrals:
#1/sqrt5int1/(v^2+1)dv#
=#tan^-1v/sqrt5#
Undo substitution #v=u/sqrt5#:
=#tan^-1(u/sqrt5)/sqrt5#
Plug in solved integrals:
#int1du-5int1/(u^2+5)du#
=#u-sqrt5tan^-1(u/sqrt5)#
Plug in solved integrals:
#2intu^2/(u^2+5)du#
Undo substitution #u=sqrtx#
=#2sqrtx-2sqrt5tan^-1(sqrtx/sqrt5)+c#
Simplify
=#2(sqrtx-sqrt5tan^-1[sqrtx/sqrt5])+c#