How do you evaluate #\log _ { 16} \frac { 1} { 32}#?
1 Answer
May 9, 2018
Explanation:
#"using the "color(blue)"law of logarithms"#
#•color(white)(x)log_b x=nhArrx=b^n#
#"let "log_(16)( 1/32)=n#
#rArr1/32=16^n#
#"now "32=2^5" and "16=2^4#
#rArr2^-5=2^(4n)#
#"equating the exponents"#
#4n=-5rArrn=-5/4#